PORTAL: A communication library for run-time
visualization of distributed, asynchronous data

J. 5. Rowlan
rowlan@mcs.anl.gov
Mathematics Computer Science Division
Argonne National Laboratory

Argonne, IL. 60439

Abstract

In this paper we present a method for collecting and
visualizing data generated by a parallel computational
simulation during run time. Data distributed across
maultiple processes is sent across parallel communica-
tion lines to a workstation, which sorts and queues
the data for visualization. We have implemented our
method in a set of tools called PORTAL (for Parallel
aRchitecture data-TrAnsfer Library). The tools com-
prise generic routines for sending data from a par-
allel program (callable from C or FORTRAN), and «
run-time connection to the scientific visualization pro-
gram AVS. OQur method is most valuable when used to
examine large datasets that can be efficiently gener-
ated and do not need to be stored on disk. PORTAL
source libraries, detailed documentation, and work-
g examples can be obtained by anonymous fitp from
mfo.mes.anl.gov from the file portal.tar.Z from the di-
rectory pub/portal.

Key Words: Scientific Visualization, Distributed Al-
gorithms, High-Speed Networking, Massively Parallel
Processing, Sockets.

1 Introduction

Many large-scale computational science simula-
tions, such as global climate modeling, structural biol-
ogy, and superconductor modeling, are done on mas-
sively parallel supercomputers. These simulations are
usually time-dependent and often generate megabyte-
sized (or larger) datasets at each time step. A typ-
ical program execution might require the generation
of many hundreds or even thousands of timesteps to
produce a meaningful animation. The result can be
many terabytes of data.

B. T. Wightman
wightman@sol.acss.uwosh.edu
Computer Science Department

University of Wisconsin

Oshkosh, WI 54901

Such data is often stored on disk to be visualized
and reviewed on a graphics workstation at a later
date. This process is often called batch-mode visu-
alization, since the visualization occurs after all the
data has been created. Scientific visualization tools
such as AVS are designed to work in this manner.
Modern large-scale computations, however, can pro-
duce amounts of data that are prohibitively expensive
to store on magnetic disk.

We have created a set of tools called PORTAL (for
Parallel aRchitecture data-TrAnsfer Library) for visu-
alizing data directly as the calculations occur. The
use of these tools avoids the need for large disk stor-
age. Such a real-time display mechanism can also be
used to direct execution parameters during run time,
something that cannot be done in batch-mode visual-
ization.

The focus of PORTAL is the visualization of dis-
tributed data during run-time, however, some simula-
tions require many seconds or even minutes to com-
pute each frame. In these cases, we have used POR-
TAL to generate the images which were then stored
on laserdisc for viewing later.

We note that effective visualization also requires
careful selection of graphics parameters, such as view-
ing angle, object transformations, object color and
other properties. When visualizing static, precom-
puted datasets, interactive graphics tools are used
to manipulate the image. In a many-frame, time-
dependent visualization such as those described in this
paper, these parameters must be selected before the
animation begins. Typically, a precomputed sample
dataset 1s used to select these graphics parameters.

Paral | el
PORTAL data
packets <
AVS
Coroutine
AVS Net wor k
J

Graphics
Workstation

Figure 1: Overview of the PORTAL system

2 Motivation

The development of the PORTAL tools was moti-
vated by our work with a parallel climate modeling
simulation. After successfully implementing a paral-
lel version of the MM-5 and CCM-2 climate models,
we wished to run the simulation creating a visual an-
imation of the results. Having no tools available to
do this during run time, we were forced to write data
to disk. However, since most animations of the cli-
mate model required many thousands of timesteps, at
five megabytes per data set, writing each to disk was
impractical.

As an alternative, we decided to send the data di-
rectly to an AVS process over Unix sockets. This ap-
proach proved quite successful, and we were able to
create many video animations from the two parallel
climate models.

Our initial efforts produced application-specific
tools that required significant reworking to be applied
to different simulations. Subsequently, we have made
a communication library that i1s extensible and allows
the user to define the type and amount of data to be
sent.

3 The PORTAL Parallel Data Library

PORTAL (see Fig. 1) was developed to assist users
of parallel programs to visualize the results of their
computations. To make the tools easy to use, we felt
it essential to remove the burden of socket program-
ming from the user and to abstract the socket handling
routines from the actual methods used to control sock-
ets. We achieved this objective by providing the user
with a small number of function calls that automati-
cally package and send data from the parallel machine
to the workstation for visualization.

Because of their portability and ease of use, Unix
TCP/IP sockets were selected as the transport mech-
anism to send data from the remote parallel compu-
tation to the visualization process running on a local
workstation.

Although PORTAL was designed with ease of use as
a foremost consideration, the programmer must learn
the PORTAL function calls used to initialize the sock-
ets for sending, initialize the receiving software, appro-
priately package PORTAL data structures, and send
the data to the receiving machine. These are listed in

Table 1.

Table 1. PORTAL function calls

DS_init_socket_write()
DS_create_atom_handle()
DS_create_array_1D_handle()
DS_create_array_2D_handle()
DS_create_array_3D_handle()
DS_AVSinit()

DS _send_data_vectors()

DS _close_socket_write()

To use PORTAL, a user first calls the DS_init-
socket_write() function, which opens a communica-
tions port to a remote host and takes care of hand-

shaking.

Next, the program must create handles to the
data that the PORTAL system will be able to
use. These are created with the DS_create-
_datatype_handle() functions. The function DS_create-
—atom_handle() is used for atomic data; one-, two-
, and three-dimensional data types use DS_create-
—array-nD_handle() (where n € {1,2,3}).

main(void)
{

[Initialize the socket for sending */
DS_init_socket_write(&sock, &port, host);

[* Create a handle for the three-D dataset.

DS _create_array 3D_handle(&handle, &DS_REAL,"3D Data",&one,

&XDIM, &YDIM, &ZDIM,

&zero, &zero, &zero,

&XDm1, &YDm1, &ZDml,

&DS_Z DIM, &DS_Y_DIM, fracdata);

[* assign this data subset to the vector datavector. */
datavector0] = &handle;

I* Now send the AVS coroutine the appropriate parameters
describing the format and type of data being sent. */
DS_AVSinit(sock, &one, &one, (int*)datavector, &one);

[¥ start the calculation loop */
for(i = 0; i < MAX_i; i++)
{
calculate(&i,fracdata);
I* Send the dataset to the receiver */
DS_send_data_vectors(sock, &one, (int*)datavector, &one, &one);

}

DS_close_socket_write(&sock); I close socket */

}

Figure 2: Pseudo-code example

The receiving program is then told what to ex-
pect from the sender or senders through the DS_init
function. This information includes the total num-
ber of processors sending data and the number and
type of information being sent (e.g., sixty processors,
each sending two three-dimensional fields, one two-
dimensional field, and five integers (atoms)).

Before the calculation is begun, a data structure
is created to hold the data that will be sent to the
receiver. This is done using the DS_create() function
calls.

At present, the only receiving program sup-
ported by the PORTAL tools is AVS. Thus the
DS_AVSinit() function is used to send initialization
data. DS_AVSinit() takes a data handle vector and
passes the information from the header needed to
configure the AVS module through the socket. The
AVS module then configures itself properly (see Sec-
tion 5.1).

After the computation module has calculated 1its
datasets for a particular time-step, the data is then
sent to the receiving workstation by calling the
DS_send_data_vectors() routine and supplying the ad-
dress of the data structure. This function returns
when it has passed all of the data to the remote pro-
cess.

Finally, after all data has been sent, the function
DS_close_socket_write() is called to tell the remote re-
ceiving program that the sending program is discon-
necting. This functions calls the appropriate socket
commands for notification of the remote program and
the socket commands for closing the actual socket.

A pseudo-code example of the PORTAL process is
shown in Figure 2.

4 Packet Structure

All communication between the parallel nodes and
the graphics workstation is done through the use of a
data-structure abstraction called a packet structure.

In PORTAL, these packets are used as the most
basic transmission unit; all communication is of the
packet form. The simple structure, appending only
tag and length fields to the actual data, adds very lit-

tle overhead to the transmission, but allows a remote
program to identify, properly sort, and read all of the
data that is sent to it.

The receiving machine is assumed to have no knowl-
edge of the actual type and order of data being
sent. Therefore, all packets have an eight-byte header,
called a tag field, that describes the structure of the
packet (see Table 2).

The first four bytes of the tag field are used to iden-
tify the type of data being sent. The next four bytes
represent the length of the data being sent. Data is
sent following the tag field.

There are three types of packets: control packets,
AVS initialization packets, and data packets. Each is
specified by the first four bytes of the tag field.

Control packets are used to open and close sock-
ets, monitor and maintain connections, define byte fail
counts, and identify other functions internal to un-
derlying PORTAL processes to communicate between
themselves.

AVS witialization packets contain information that
is used to prepare AVS for incoming data; this infor-
mation includes the type of data being sent and the
total number of CPUs sending data.

Data packetsinclude information about the particu-
lar CPU sending the data, a time stamp, array major
and minor ordering, and the compositional relation-
ship between the data being sent and the overall data
(thus allowing a subset of data from a single node to
be properly reconstructed within the larger field be-
ing calculated by all the nodes). Data packets are
always sent in pairs. The first packet is a descriptor
specifying the sending CPU ID, the full dimensions of
the data field across all nodes, the subset of data being
sent, and array major and minor ordering information.
The second packet contains the data itself.

Table 3 shows a typical series of packets sent by
PORTAL during execution of a program.

tag field flags possible values

tag control,javs_init, data

12-bits

tag type start, pnd, header, data
4-hits

avs data avs data, avs header

4-hits

storage type ator, 1D, 2D, 3D, Molecular, UCD
4-hits

datatype int16|int32, real, reald, char
8-hits complex8, complex16, logical
length lengthlin bytes of data section
4-hytes

DATA variable length byte stream
variable

Table 2: Packet structure (8-byte tag field followed by
data)

Packet Structure:
(tag, tag type, avs type, storage type, data type, length, DATA)

Packets sent during program startup:

(control, header, none, none, hello, zero, no data)
(control, header, none, none, set_fail_count, var, fail count)
(AVSinit, start, none, none, none, fixed, #CPUs, CPU id,
number of data
packets to follow)

For each data packet being sent:
(AVSinit, none, data, type, type, var, data header)

After all the descriptors are sent:
(AVSinit, end, none, none, none, fixed, #CPUs,CPU id,
number of packets)

The following packets are sent for each data field calculated:

(data, start, none, none, none, zero, no data)
(data, header, none, type, type, zero, no data)
(data, data, none, none, none, var, DATA field)
(data, end, none, none, none, zero, no data)

At program completion:
(control, header, none, none, goodbye, zero, no data)

Table 3: Typical packets sent during program execution

5 PORTAL Visualization

5.1 AVS Implementation

AVS is a popular scientific visualization program
in use at Argonne National Laboratory. It provides
many tools for data visualization but no support for
run-time visualization of large-scale parallel codes. Al-
though originally designed, and primarily used, as a
batch-mode visualization tool (i.e., on precomputed
data), we felt that AVS could be enhanced to meet
our need for run-time display of data.

In the AVS implementation of PORTAL, the data
receiver is packaged within an AVS coroutine (called
Read Socket). This module understands the PORTAL
socket packet structure; and it reads, sorts, and queues
the incoming PORTAL data packets. Read Socket
outputs the data in AVS field format.

Since the sockets receiving data must be opened
before the sending sockets can be opened, the AVS
routine 1s the first process to be started. The AVS
Read Socket module adapts itself to the type of data
being sent and configures its output ports accordingly.
However, at startup, the AVS module does not know
what type of data it will receive, so it must start up
in a wait state until the sending nodes each make a

DS_AVSinit() function call.

After successful receipt of an DS_AVSinit() call
from each processor, the AVS module learns the type
of data it will be reading from the sockets, configures
its output ports appropriately, and enters a run state.

Since the AVS module is in a wait state until the
module is initialized, AVS will appear to hang until
the remote program starts and has sent the initializa-
tion parameters. Thus the Read Socket module cannot
be attached to an AVS network until the initialization
stage has completed. This causes a problem when sav-
ing a network, since the Read Socket module cannot
save 1ts dynamic connections. However, it is a fairly
simple matter to build and save the rest of the net-
work, pull the read socket module onto the palette,
start the remote application, and attach a couple of
modules once the read socket module 1s configured.

Since multiple processors are sending data to the re-
ceiving workstation, and since these transmissions are

potentially arriving at different rates, the AVS module
must also queue up and synchronize the data packets
it receives, to ensure that all data is ordered correctly.

Synchronizing data is accomplished via a data
queue. By the use of a user tag, which is passed to the
DS_send_data_vectors() function, the data is marked
at a certain “time step” and then grouped with other
packets from the same time step. The front item in
the queue is not released until all of the machines have
sent data for that time step. This means that if a pro-
cessor does not have data for a particular time step,
it must send at least a null packet.

Each queue entry is constructed of an ID marker, a
list of machines that information is still needed from,
and the list of data that has been received. This offers
a quick check of whether or not the data can be taken
from the queue and placed on the output ports of the
module by examining the machine list to see whether
there are any machines remaining to read from.

5.2 Porting to Other Implementations

The PORTAL receiving process is written in stan-
dard ANSI C and is comprised of a function that lis-
tens to a series of sockets for PORTAL-format data,
and a system of buffers to reconstruct datasets from
their sub-parts, and queue up asynchronous datasets
that arrive early for reconstruction later. These func-
tions are independant of the visualization system used.

Porting the receiver process from the AVS imple-
mentation to another visualization package just re-
quires changing the AVS data pipeline code to conform
to the format required by the visualization package se-
lected.

6 Conclusions

PORTAL allows a parallel program to send asyn-
chronous distributed data to a remote graphics work-
station for run-time visualization. Thus, it can offset
the need to store many gigabytes or terabytes of data
on disk. The immediate feedback of a run-time system
also offers greater efficiency in identifying program er-
rors or inaccurate parameters.

7 Future Directions

Future enhancements to the PORTAL package will
include feedback from the graphics package to deter-
mine the behavior of the remote module. This could
also be used to enhance the error recovery mechanisms
of the system by allowing non-acknowledged packets,
retries, and reconnects.

We are currently extending the data types sup-
ported by PORTAL to include both a molecular model
and UCD (Unstructured Cell Data) data type.

Support will also be added for other transport
mechanisms including IPI-3, EUI, and FCS.

Finally, we plan to port the socket reader module
to other graphics packages, allowing a user to pick
a visualization package that best suits the tastes or
needs of the programmer.

Acknowledgements

This work was supported be the office of Scientific
Computing, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

References

[1] “AVS Developer’s Guide,” Part 320-0011-02 Rev
B, Release 4, Advanced Visual Systems Inc., May
1992.

[2] “Sun Network Programming Guide,” Part 800-
3850-10, Release A, Chapters 10,11, Sun Microsys-
tems Inc., March 27, 1990.

